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Abstract

This study explored the application of deep reinforcement learning (DRL) as an inno-
vative approach to optimize test length. The primary focus was to evaluate whether
the current length of the National Board of Chiropractic Examiners Part I Exam is jus-
tified. By modeling the problem as a combinatorial optimization task within a Markov
Decision Process framework, an algorithm capable of constructing test forms from a
finite set of items while adhering to critical structural constraints, such as content
representation and item difficulty distribution, was used. The findings reveal that
although the DRL algorithm was successful in identifying shorter test forms that main-
tained comparable ability estimation accuracy, the existing test length of 240 items
remains advisable as we found shorter test forms did not maintain structural con-
straints. Furthermore, the study highlighted the inherent adaptability of DRL to con-
tinuously learn about a test-taker’s latent abilities and dynamically adjust to their
response patterns, making it well-suited for personalized testing environments. This
dynamic capability supports real-time decision-making in item selection, improving
both efficiency and precision in ability estimation. Future research is encouraged to
focus on expanding the item bank and leveraging advanced computational resources
to enhance the algorithm’s search capacity for shorter, structurally compliant test
forms.
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Introduction

Balancing test length and content is critical for designing effective assessments that

measure examinees’ knowledge and skills comprehensively yet efficiently (Angoff,

1953; Haberman, 2020; Kruyen et al., 2012; Sxahin & Anıl, 2017; Yamamoto, 1995).

Test length should be sufficient to ensure the content validity of the assessment,

meaning it adequately covers the breadth and depth of the constructs being measured

(Burisch, 1997; Horst, 1951; Kane & Bridgeman, 2017; Raykov & Marcoulides,

2011). A test that is too short may fail to capture the full range of competencies,

leading to reduced reliability and potentially invalid conclusions about the exami-

nee’s performance. Conversely, excessively long tests may introduce fatigue effects,

compromising the validity of responses (Ackerman & Kanfer, 2009; Jensen et al.,

2013). Hence, test developers must carefully consider the number of items to opti-

mize measurement precision while maintaining alignment with the testing objectives

and constraints.

The cost of administering longer exams represents a significant consideration for

testing programs, as it directly impacts resource allocation and operational efficiency

(Ellis, 2021). Longer assessments typically require increased time for proctoring,

extended use of testing facilities, and higher costs for scoring, particularly if manual

or rubric-based evaluation is involved (Harris et al., 2008; Jakee & Keller, 2017;

Nelson, 2013). Moreover, they may pose logistical challenges such as scheduling

conflicts and heightened examinee stress, potentially affecting test-taker engagement

and performance (Hughes, 2005; Pascoe et al., 2020). These financial and operational

burdens necessitate a strategic approach to test design, ensuring that the benefits of

extended testing—such as enhanced construct representation justify the associated

costs and logistical complexities. Balancing these factors is essential for creating

assessments that are not only psychometrically sound but also economically viable

(Davey et al., 2015). Furthermore, the size of an item bank directly influences the

flexibility in test development and length of test forms (Weiss, 2013). A robust item

bank enables the generation of multiple test forms and supports adaptive testing,

where the difficulty of items dynamically adjusts to the test-taker’s ability level.

However, creating and maintaining large item banks is resource-intensive, requiring

significant investment in item development, calibration, and ongoing updates (Xing

& Hambleton, 2004). Thus, optimizing test length is imperative to balance compre-

hensive content measurement with efficiency and practicality. Innovative approaches

are urgently needed to create assessments that are psychometrically sound, economi-

cally viable, and adaptable to diverse testing needs (Svetina et al., 2019; Yasuda

et al., 2021).

This study explores the application of deep reinforcement learning (DRL;

Francois-Lavet et al., 2018; Mousavi et al., 2018) as a method for optimizing test

length and introduces a framework for its utilization in computer adaptive testing

(CAT). Using the Basic Science (Part I) testing program of the National Board of

Chiropractic Examiners (NBCE), this study’s goal was to examine how DRL could

be used as a test creation tool by applying it to test length optimization. By
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conceptualizing the problem as a combinatorial optimization task (Schrijver, 2003)

and modeling it as a Markov Decision Process, the study developed an algorithm to

construct tests from a finite pool of items while adhering to structural constraints,

including appropriate content representation and psychometric specifications.

A Brief History

Reinforcement learning (RL) has emerged as a powerful approach to solve complex

problems, particularly in the domain of combinatorial optimization. Its utility is well-

illustrated through the traveling salesman problem (TSP; Hoffman et al., 2013), a

classical problem that has long served as a benchmark for optimization algorithms

(Agatz et al., 2018; Johnson, 1990). The TSP involves finding the shortest possible

route that visits a set of cities once and returns to the starting point, making it repre-

sentative of a wide range of real-world applications, such as logistics, routing, and

network design (Junger et al., 1995).

The application of RL to the TSP has demonstrated significant advancements,

leveraging neural networks and policy optimization techniques to achieve near-

optimal solutions. Recent studies have shown that RL models, such as those employ-

ing attention mechanisms and sequence-to-sequence frameworks, can learn heuristics

for TSP without relying on handcrafted features, offering generalizability to unseen

instances (Kool et al., 2019). Moreover, RL approaches have been integrated with

Monte Carlo Tree Search and other optimization strategies to further enhance perfor-

mance and efficiency (Vinyals et al., 2015).

In recent years, RL has revolutionized the approach to solving the TSP, marking a

significant shift toward data-driven, adaptive optimization. RL models leverage

neural networks to learn solution heuristics directly from data, enabling them to gen-

eralize across different problem instances. Methods such as pointer networks and

attention mechanisms have demonstrated the ability to produce high-quality solutions

efficiently, even for large-scale problems, by dynamically adapting to the constraints

and nuances of individual instances (Kool et al., 2019; Vinyals et al., 2015). Unlike

traditional algorithms, RL approaches also offer the flexibility to incorporate addi-

tional constraints seamlessly, making them particularly versatile for real-world appli-

cations (Bello et al., 2016).

The evolution of algorithms for solving the TSP reflects a steady progression in

computational efficiency and adaptability, driven by advancements in optimization

methods and RL. In 1970, the quadratic assignment algorithm employed dynamic

programming techniques to achieve one of the shortest distances calculated for the

TSP at the time. This algorithm utilized the Bellman equations, a foundational

approach in dynamic programming, to simplify function approximation by breaking

the problem into smaller, recursive subproblems. This principle of problem decom-

position is also a hallmark of modern RL algorithms (Graves & Whinston, 1970;

Rahman et al., 2021; Y. Yang & Whinston, 2023).
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The development of ant-Q in 1995 marked an early application of RL to the TSP,

combining elements of Q-learning with ant colony optimization. This algorithm used

simulated pheromone trails to learn solutions iteratively while Q-learning facilitated

the recording and evaluation of policies based on the quality of actions taken

(Gambardella & Dorigo, 1995). Ant-Q introduced a novel framework for comparing

and evaluating solutions, making it a significant step forward in adaptive problem-

solving. However, like its predecessor, the quadratic assignment algorithm, ant-Q

faced limitations in scalability, particularly when applied to larger and more dynamic

environments (Y. Yang & Whinston, 2023).

Neural networks enhance the ability of RL algorithms to approximate complex

functions, enabling them to process larger datasets and adapt to more intricate prob-

lem spaces (Francois-Lavet et al., 2018). A notable milestone in this evolution was

the development of the REINFORCE algorithm in 2019. By incorporating deep

neural networks, REINFORCE significantly reduced the computational complexity

associated with solving the TSP. It outperformed both the quadratic assignment algo-

rithm and ant-Q in handling larger problem instances, generating solution paths for a

greater number of cities with enhanced accuracy and efficiency (Y. Yang &

Whinston, 2023; Mazyavkina et al., 2021).

Algorithms like REINFORCE have ushered in a new era of DRL, characterized

by their capacity to leverage advancements in computing power and neural network

architectures. DRL algorithms are now widely recognized for their adaptability and

effectiveness in solving combinatorial optimization problems beyond the TSP, mak-

ing them a versatile and evolving tool in computational optimization.

RL in Education and Tests

Li et al. (2023) proposed the use of DRL to develop individualized learning plans

that adaptively select the most appropriate learning materials based on a learner’s

latent traits (abilities). Their approach utilized a model-free DRL algorithm, specifi-

cally the deep Q-learning algorithm, which effectively identifies an optimal learning

policy from data on learners’ progress without requiring prior knowledge of the tran-

sition model for learners’ continuous latent traits. To enhance data efficiency, they

incorporated a transition model estimator using neural networks to emulate the learn-

ing process. Simulation studies demonstrated that the proposed algorithm efficiently

identified optimal learning policies, particularly when aided by the transition model

estimator, even with limited training data from a small sample of learners.

Pian et al. (2023) developed an RL framework for automated test item selection.

Their method employs RL to learn item selection algorithms in a data-driven manner,

capturing implicit cognitive relationships between test items while avoiding unneces-

sary item administration. Unlike traditional approaches, their method does not rely

on examinees’ estimated knowledge states, mitigating potential inaccuracies from

imprecise estimations. The proposed approach leverages implicit cognitive process
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information to enhance efficiency in item selection, providing a more effective and

reliable testing experience.

Xue et al. (2021) introduced a supervised learning framework to correct biased

item difficulty estimates in virtual learning environments. Using deep learning tech-

niques, the authors converted observed response patterns into continuous latent traits

and approximated complex continuous functions that are difficult to model mathema-

tically. In addition, the study proposed two adjustment methods to enhance the accu-

racy of item parameter estimates within the semi-supervised learning framework.

Simulations under the two-parameter logistic Item Response Theory model showed

that the proposed framework successfully reduced biases in both student ability and

item parameter estimates, thereby improving the overall accuracy of the system.

In a related study, Zhen and Zhu (2024) developed a learning framework for

cheating detection in educational assessments using TabNet and other machine learn-

ing models. Their research involved a comprehensive evaluation of 12 base models,

including Naive Bayes, linear discriminant analysis, Gaussian processes, support vec-

tor machines, decision trees, random forests, Extreme Gradient Boosting (XGBoost),

AdaBoost, logistic regression, k-nearest neighbors, multilayer perceptrons, and

TabNet. The findings revealed new insights into the potential of deep neural network

models for identifying cheating in educational settings, highlighting the utility of

TabNet as a robust tool for predictive accuracy and interpretability.

The RL Algorithm

RL algorithms are fundamentally inspired by the study of animal learning, particu-

larly the groundbreaking work of Ivan Pavlov and B. F. Skinner. Pavlov’s experi-

ments on classical conditioning demonstrated how animals could form associations

between a neutral stimulus and a biologically significant event, providing early

insights into the mechanisms of learning through feedback (Pavlov, 1927). By con-

trast, Skinner’s operant conditioning research emphasized the active role of behavior

in shaping learning, introducing the concept of reinforcement through rewards and

punishments (Skinner, 1938). Skinner’s work on reward schedules revealed how ani-

mals adapt their actions to maximize positive outcomes, forming the basis for many

reward-driven learning models (Sutton & Barto, 2018).

The RL algorithms are characterized by five key components: the agent, environ-

ment, reward, policy, and value function (Szepesvári, 2022; Shakya et al., 2023).

The agent represents the decision-making entity within the RL framework, navigat-

ing through the environment to achieve specified objectives. The environment is the

structured system that provides the agent with a series of states, a set of possible

actions, and corresponding rewards. At each state, the agent selects an action from

its available options, adhering to predefined constraints, and receives a reward as

feedback for its choice. This reward functions as a signal reflecting the immediate

consequence or quality of the selected action (Qiang & Zhongli, 2011).
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Based on this feedback, the agent updates its policy function, which governs the

strategy for action selection in subsequent states. The policy aims to optimize the

agent’s behavior to maximize cumulative rewards over time. The iterative nature of

this feedback loop allows RL algorithms to learn and adapt dynamically, improving

their performance as they interact with the environment. In addition, the value func-

tion serves as an evaluation metric, estimating the long-term expected rewards associ-

ated with each state or state-action pair, further guiding the agent’s decision-making

process. Together, these elements form a cohesive framework enabling RL systems

to effectively solve complex decision-making problems (Gosavi, 2017).

Policies map states to actions is defined by:

p(sk)! ak ð1Þ

The best policy produces the highest possible cumulative reward throughout an epi-

sode, or single run from the initial to terminal state of the environment. The value

function estimates the long-term expected reward of a given state-action pair under a

policy:

Vp(sk) = Ep½GtjSt = sk � ð2Þ

These estimates are used to evaluate the quality of the decisions made by the algo-

rithm through an episode. In the latest equation above, Vp(sk) is given both in upper

case and lower case, please check for consistency. is the value function of a state sk

under a policy p. The expected value, Ep, of this function is a realization of the dis-

counted return (Gt), or sum of discounted rewards up to time t, given the state at t is

sk . Discounting rewards sets a priority on rewards received sooner rather than later.

Multiplying by a discount factor g with range 0 \ g \ 1 helps the algorithm balance

the trade-off between short-term gains and long-term benefits.

Through iterative repetition and exploration, RL algorithms progressively refine

their approach to identify an optimal policy. Repeatedly selecting actions deemed

optimal reinforces effective behaviors while exploring alternative actions in various

states enables the agent to gain a more comprehensive understanding of the environ-

ment. This iterative process incorporates temporal difference learning, a critical com-

ponent of RL, which allows the agent to update its value function estimates by

leveraging the difference between current estimates and those derived from subse-

quent states (Sutton & Barto, 2018). The improvement of the policy emerges incre-

mentally, as these updates align the value function more closely with the observed

outcomes and expected returns. Over time, the cumulative effect of these updates

drives the algorithm to prioritize actions predicted to yield higher rewards. This

decision-making framework is formalized within the structure of the MDP

(Puterman, 1990), which underlines the mathematical foundation of RL (Wei et al.,

2017).
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NBCE Part I Exam

The Part I examination, administered by the NBCE, serves as a foundational assess-

ment for chiropractic students, evaluating their knowledge in core scientific disci-

plines integral to the practice of chiropractic care. The exam is divided into six

domains: General Anatomy, Spinal Anatomy, Physiology, Chemistry, Pathology,

and Microbiology (NBCE, 2024).

The exam is designed to ensure equal representation across all six domains, with

an equivalent proportion of test items allocated to each. The exam contains 50 items

per domain and is scored within-domain providing six scores on a scale of 125 to 800

with a cut set at 375 (Himelfarb et al., 2020, 2022).

Literature Review

Over the past decade, the development of efficient and psychometrically sound

shorter-form assessments has gained significant attention in psychological and edu-

cational research. Traditional methods of test reduction, such as selecting items with

the highest factor loadings or maximizing test information, often fail to adhere to

multiple psychometric criteria required by operational testing programs. In response,

recent advancements in computational methods such as structural equation modeling

(SEM)-based techniques, machine learning algorithms, and tree-based adaptive clas-

sification models have provided more sophisticated solutions for scale abbreviation.

Often, these approaches optimize item selection based on predefined validity criteria

while maintaining measurement accuracy and structural integrity.

Recent advancements in personality research highlighted the need for shorter

inventories to improve efficiency without compromising accuracy. However, few

such measures exist. A study conducted by Yarkoni (2010) introduced an automated

method for abbreviating personality inventories with minimal effort, making assess-

ment more scalable. Its validity was tested across three studies, demonstrating that

the method effectively preserves psychometric properties while significantly reducing

test length. In one application, it generated an abbreviated inventory that accurately

reproduced scores from multiple existing measures. Findings support automated

abbreviation techniques as a valuable tool for streamlining personality assessment

while maintaining validity and structural integrity.

Browne et al. (2018) presented an SEM-based approach that utilized the standar-

dized residual variance–covariance matrix to integrate multiple traditional psycho-

metric criteria, including item homogeneity and reliability, as well as convergent and

discriminant validity. Using SEM models with a fixed structure, researchers demon-

strated a straightforward progressive elimination algorithm that systematically opti-

mizes item selection across multiple psychometric criteria. This approach is then

applied to the development of a short-form version of the multidimensional scale,

which served as an indicator of psychological vulnerability to gambling-related

problems.
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In a relatively recent inquiry, researchers introduced an automated genetic algo-

rithm (GA)-based method for abbreviating psychometric instruments. In their stud-

ies, this method was applied to develop a concise 40-item version of a psychological

scale. The abbreviated measure demonstrated strong convergent correlations with the

original scale and outperformed an alternative measure developed using a conven-

tional methodology (Eisenbarth et al., 2015).

Previously, researchers explored the application of the ant colony optimization

(ACO) algorithm in the development of short-form psychometric scales. As a demon-

stration, a 22-item abbreviated version of a quality-of-life assessment tool for individ-

uals with diabetes was constructed using data from a sample of 265 diabetes patients.

In addition, a simulation study is conducted to compare the performance of the ACO

algorithm with traditional item selection methods, including those based on the larg-

est factor loadings and maximum test information criteria. The findings indicate that

the ACO algorithm outperforms these conventional approaches, highlighting its effi-

cacy in optimizing item selection for scale reduction (Leite et al., 2008).

Further research showed that various psychological instruments suffer from psy-

chometric deficiencies, as the derived person parameters often lack a solid theoretical

foundation and fail to meet established psychometric criteria. The authors noted that

one approach to enhancing the psychometric properties of such instruments is through

abbreviation. Their study evaluated and compared multiple techniques for shortening

self-report assessments using the Trait Self-Description Inventory within a large sam-

ple of 14,347 participants. The methods examined included: maximizing reliability

and main loadings, minimizing modification indices and cross-loadings, the PURIFY

Algorithm in Tetrad, ACO, and GA. Among these approaches, ACO demonstrated

superior performance in enhancing the model fit of short-form scales (Olaru et al.,

2015).

An additional study examined the effectiveness of several automated item selec-

tion algorithms, including ACO, Tabu search, GA, and a novel implementation of

the simulated annealing algorithm using Monte Carlo simulation. The study assessed

these algorithms in selecting short forms of scales with unidimensional, multidimen-

sional, and bifactor structures, both under correctly specified and misspecified confir-

matory factor analysis (CFA) models and in the presence or absence of external

variables. Findings indicated that when the CFA model of the full-scale version is

correctly specified or contains only minor misspecifications, all four algorithms gen-

erated short forms that retain strong psychometric properties and preserve the

intended factor structure. However, under conditions of major model misspecifica-

tion, the performance of all algorithms declined (Raborn et al., 2020).

Lim and Chapman (2013) noticed that existing instruments designed to assess atti-

tudes toward mathematics have been criticized for being excessively long, outdated,

or developed primarily using Western samples, limiting their generalizability. To

address these limitations, a shortened version of the Attitudes Toward Mathematics

Inventory (ATMI) was developed, measuring four key subscales: enjoyment of

mathematics, motivation to engage in mathematics, self-confidence in mathematical

8 Educational and Psychological Measurement 00(0)



abilities, and perceived value of mathematics. The psychometric properties of this

abbreviated instrument were evaluated using a sample of 1,601 participants from

Singapore.

McArdle (2014) used CFA to confirm the original four-factor structure of the

ATMI. However, within this structure, several items exhibited high intercorrelations,

suggesting redundancy. The author performed scale reduction. The removal of the

problematic items either enhanced or did not adversely affect the psychometric prop-

erties of the instrument, leading to the creation of the short version of ATMI. The

short ATMI demonstrated strong correlations with the original ATMI (mean r = .96),

high internal consistency both for the overall scale (a = .93) and individual subscales

(mean a = .87), and satisfactory test–retest reliability over a 1-month period (mean

r = .75).

Later, McArdle (2014) explored the effectiveness of a Decision Tree Analysis

(DTA) approach in the context of CAT. The underlying psychometric assumption

was that if an individual’s total score is derived from a comprehensive set of test

items (I), their performance on a smaller subset of items (i \ I) can be used to

approximate the overall test score with slightly reduced but still substantial accuracy.

The author demonstrated that if this assumption holds, administering only a selected

subset of items rather than the full set could significantly reduce test administration

time while maintaining acceptable measurement precision.

The findings indicated that the DTA approach achieves considerably higher accu-

racy, with a scale reliability of r̂2 = .85 while requiring the administration of only 4

to 7 items. This suggested that the DTA method offers a highly efficient alternative

for adaptive testing. The author further proposed additional cost–benefit experiments

to examine the trade-offs between efficiency and measurement precision in other test-

ing scenarios (McArdle, 2014).

In another study, researchers applied GAs to develop a shortened version of a psy-

chological assessment while maintaining its original multidimensional structure and

psychometric integrity. The full-length instrument, though reliable, posed practical

limitations due to its length. While an existing brief version was available, it con-

densed multiple dimensions into a single factor, limiting its applicability. To address

this, a GA-based method was used to create a more efficient version that retained the

original factor structure while significantly reducing administration time. Results

demonstrated that the abbreviated version closely mirrored the full-length measure in

terms of structural consistency, inter-correlations, and associations with key psycho-

logical constructs, making it a viable alternative for both research and clinical appli-

cations (Sahdra et al., 2016).

Finally, a recent study explored the use of machine learning techniques to develop

a short, tree-based adaptive classification test from a lengthy assessment. A case

study on risk assessment for juvenile delinquency highlighted key challenges, includ-

ing the complexity of measuring multiple constructs and imbalanced training data

due to a low prevalence of target outcomes. Traditional adaptive testing methods

may be ineffective in this context, whereas decision tree models offer a promising
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alternative. A cross-validation study comparing eight tree-based adaptive tests to five

benchmark methods found that the best-performing models achieved superior or

comparable classification accuracy while drastically reducing test length (Zheng

et al., 2020).

Recent advancements in statistical software have enabled the reduction of lengthy

scales. The R packages GAabbreviate (Scrucca and Sahdra, 2016), ShortForm

(Raborn and Leite, 2018), and GA (Scrucca, 2013) provide powerful tools for opti-

mizing psychometric assessments and solving complex optimization problems.

GAabbreviate is designed to automate the abbreviation of lengthy psychological

scales using GAs ensuring that shortened versions retain key psychometric properties

while minimizing administration time. ShortForm facilitates the development of

short-form scales by selecting items based on multiple validity criteria, such as

model fit and relationships with external variables, utilizing ACO to optimize item

selection. Meanwhile, GA offers a flexible framework for applying Gas to a wide

range of optimization problems, including mathematical functions and statistical

modeling.

Current Study

In the context of test development, the optimal objective is to design a valid and reli-

able assessment that adheres to multiple structural constraints while being con-

structed from a finite set of discrete test items. These constraints may include content

coverage, proportional representation of item difficulty levels, and alignment with

psychometric specifications such as validity, reliability, and fairness (Haladyna &

Rodriguez, 2013). Furthermore, test creation is inherently sequential in nature, as the

ordering of items often plays a critical role in maintaining logical flow and ensuring

that the test adheres to cognitive and instructional principles (Sireci, 1998). For

example, certain test frameworks require items to be presented in increasing diffi-

culty or to group questions by domain or skill, adding a layer of complexity to the

test construction process.

Modern machine learning methods offer promising solutions for addressing the

complexity and constraints of test creation efficiently. Algorithms such as RL and

other optimization-based approaches can be employed to dynamically select and

order test items while optimizing for multiple objectives. RL, for instance, can model

test creation as a sequential decision-making process, where the system learns to

select the next item based on the current state of the test under construction (Wang

et al., 2024). These algorithms not only account for predefined structural constraints

but can also adaptively refine their selection policies through iterative learning,

improving performance over time.

Moreover, machine learning approaches are particularly advantageous for large-

scale assessments, where the size of item banks and the complexity of test blueprints

make manual test construction infeasible. By integrating neural networks or combi-

natorial optimization techniques, these systems can simultaneously consider content
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balance, psychometric properties, and even time constraints to produce test forms that

meet rigorous standards (van der Linden, 2005). Recent advancements in attention-

based models and automated item selection algorithms further enhance the ability to

construct optimal tests with minimal computational overhead (Kool et al., 2019).

The NBCE has recently started a revision of its Basic Sciences (Part I) exam,

prompting the need to reevaluate the appropriate number of items included in the

assessment. This process ensures that the exam maintains its validity and reliability

by providing adequate information to accurately estimate the examinee’s ability.

However, achieving this optimal set of items is a complex task, as it requires con-

structing numerous test forms while adhering to content, psychometric specifications,

and exposure constraints established by the development team. In the process, the

NBCE increased the number of annual exam administrations; therefore, we consid-

ered a possible test reduction.

For the NBCE, a shorter exam provides opportunities for the development of a

greater number of diverse test forms, which can substantially enhance item exposure

control. In addition, the creation of shorter, equally reliable test forms can optimize

resource utilization, as fewer items per exam may allow for more efficient item bank

management and streamlined test assembly processes.

For examinees, a shorter exam can have profound positive effects on the testing

experience. Reducing the number of test items can help mitigate the effects of test

fatigue, a phenomenon where prolonged cognitive effort leads to diminished focus,

increased stress, and reduced performance accuracy, particularly during lengthy

assessments (Ackerman et al., 2010; Tagher & Robinson, 2016). By shortening the

exam while maintaining psychometric rigor, students can engage more consistently

across all test items, yielding results that are both more accurate and representative

of their true abilities.

The challenge was amplified by the increasing size of item banks and the growing

complexity of constraints, making it more difficult to identify subsets of items that

optimize both test precision and structural integrity. In turn, this provided the

researchers an opportunity to review RL as a promising solution due to its capacity

for self-training and adaptive decision-making. In this context, the purpose of this

study was to develop a deep DRL algorithm capable of determining, or confirming,

the number of items required to estimate û (test-taker’s ability) accurately and con-

sistently while satisfying established content and exposure constraints. Ideally, the

algorithm would learn a policy capable of producing a subset of items that maintains

or improves precision relative to the current test format.

Method

During the process of test restructure, the domain scores for multiple administrations

of the Part I exam involving 1,425 examinees and 240 test items were generated using

an Item Response Theory (IRT)-based calibration, linking, and scoring procedures.

One of the primary advantages of IRT lies in its ability to integrate examinee
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performance and item difficulty estimates onto a common scale. Furthermore, IRT

provides a robust framework for ensuring that scores reflect not only the number of

correct responses but also the complexity of the items encountered, thereby enhan-

cing the fairness and precision of the assessment (Bock et al., 1997; Bortolotti et al.,

2013). The equation for the 3PL model is given by the following:

P ui = 1ju, a, b, cð Þ= ci + (1� ci)
eai(uj�bi)

1 + eai(uj�bi)
ð3Þ

where bi is the item of difficulty parameter, ai is the item discrimination parameters,

ci is the guessing parameter, and uj is the examinee’s ability level characterizing item

i and examinee j (de Ayala, 2009). The item parameters were linked to the item bank

scale using the Stocking and Lord transformation method (Stocking & Lord, 1983;

Kolen & Brennan, 2014). The scaled parameters are used for scoring. This would

allow all item parameters from the administration to be placed on the same scale and

the examinees’ scores produced on the next step to be comparable across different

administrations and forms.

Calibrating these items makes measuring the utility of DRL as a base for CAT

and as a general test construction tool possible as the items and their parameter val-

ues can be used to support the comparison of three different approaches. The three

include an implicit learning approach, a heuristic approach, and a mixed approach.

The implicit learning approach and the mixed approach both used DRL but the latter

included influences from traditional CAT systems which explicitly use item informa-

tion as an item selection criterion while the former implicitly learns what items to

administer through experience. The heuristic approach is more strict in its search pro-

cess for a shorter test form as it is rule-based rather than a trial-and-error process.

Implicit Approach

In the implicit DRL algorithm examinee j’s abilities (u) were estimated using the

expected a posteriori approach (Bock & Mislevy, 1982; de Ayala, 2009), which was

given by:

ûj =

PR
r = 1 XrL(Xr)A(Xr)PR

r = 1 L(Xr)A(Xr)
ð4Þ

The equation uses Hermite-Gause’s quadrature approximation to approximate the

normal distribution for the examinee’s ability. In this equation, Xr is a quadrature

point and A(Xr) is an associated quadrature weight used to integrate the area with a

series of discrete rectangles. The likelihood L(Xr) is a function at Xr given examinee

j’s response pattern x1j.xLj for L items’ exam:

L Xrð Þ=
YL

i = 1

Pi Xrð Þxij (1� Pi(Xr))
(1�xij): ð5Þ
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Corresponding standard errors SE(û) were also computed for a specific examinee

across items using:

SE ûj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r = 1 (Xr � ûj)

2
L(Xr)A(Xr)PR

r = 1 L(Xr)A(Xr)

vuut ð6Þ

The average standard error SE(û) across all simulated students was 0.236 and the goal

of the implicit DRL algorithm was to minimize this value such that a subset of items

used in a simulated test had a SE no larger than 0.236. This approach aimed to vali-

date whether alternative versions of the test could estimate u accuracy comparable to

the original while adhering to established content and exposure constraints. Input

from the test development team was sought to define the structural parameters for the

test design. These parameters stipulated that the test must consist of no fewer than

120 items and no more than 240, to ensure adequate content representation within the

selected subsets, and maintain specific item difficulty distributions. Specifically, the

difficulty splits required 31% easy items, 51% items of medium difficulty, 13% hard

items, and 5% free-to-vary items in all simulated test configurations. The combina-

tion of item difficulty levels is based on the test plan for the NBCE Part I exam.

These constraints were critical to maintaining the psychometric integrity and struc-

tural balance of the test across iterations.

The assembled environment of the implicit DRL algorithm was modeled to

resemble a computer-adaptive test. The initial state of the program would be empty,

representing the beginning of an exam. The first action of the agent within the envi-

ronment would be administering one random item from the item bank holding all

240 items with their equating parameters, item index, domain indicator, and diffi-

culty level. Thereafter, items administrated at future states would be contingent on

the probability assigned to them by the policy function. For all episodes’ states suc-

ceeding the first, 0s and 1s were generated to represent whether the hypothetical stu-

dent answered an administered item incorrectly or correctly. These responses (yi)

were randomly generated as follows:

Sample wi;Binomial n = 240, p = 0:517ð Þ, ð7Þ

Generate yi =
0 if wi\n � p

1 if wi . n � p

�
ð8Þ

The parameters of the Binomial distributed response vector w
*

were based on the

total number of items, n, and the average proportion, p, of correct responses for stu-

dents with estimated ability values �1:35\ û\� 1:15. This student group’s propor-

tion of correct responses was used because it matches the average ability level range

of test taskers in years past. State-action pairs were collected at each step within an

episode and used to estimate and continuously update û and SE(û). These values rep-

resent the estimated ability and standard error of ability for each simulated student

along an episode which were calculated by integrating Equations (4) to (6) into the
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DRL algorithm. Two conditions signaled the end of an episode. The first is reaching

SE û
� �

= 0:22, while the second was after all 240 items were administered. After

administering an item, it was deleted for the duration of the episode so no duplicates

would be presented, and the maximum length of the simulated test would be 240.

The algorithm was guided toward desired outcomes through a structured reward

system. Positive rewards were assigned at each step when the algorithm successfully

achieved the predefined domain and difficulty ratio constraints. To encourage effi-

ciency in measurement, the algorithm was designed to minimize the number of admi-

nistered items while still achieving a sufficiently low standard error for the ability

estimate SE(û). Specifically, each additional item carried a negative reward, and if

the algorithm succeeded in terminating the test within certain item-count intervals

while maintaining SE û
� �

below a threshold of 0.236, it received an additional posi-

tive reward. For example, an episode ending between 130 and 135 items with

SE û
� �

\0:236 was rewarded with more than one ending between 160 and 165 items

with the same standard error criterion. By structuring the reward this way, the

method explicitly encourages the discovery of a smaller subset of items that still

meets an acceptable standard error level, thereby preserving measurement accuracy

while reducing the overall test length.

The selected policy optimization method was proximal policy optimization (PPO),

an algorithm in RL known for its efficiency and robustness. PPO offers several

advantages, including its ability to utilize the value function to guide policy updates

by computing trajectories and advantage estimates, as well as its use of trust regions

to ensure stable learning (Schulman et al., 2017). Trajectories represent sequences of

states, actions, and rewards that the agent experiences during an episode, capturing

the interactions within the environment over time. Advantage estimates, derived from

these trajectories, measured the relative improvement of a specific action compared

to the average action for a given state. This estimation provided critical feedback,

enabling the policy to focus on actions that contribute extensively to achieving opti-

mal outcomes while maintaining stability in the learning process.

Let us consider the following:

Ap ak , skð Þ= Qp ak , skð Þ � Vp(sk) ð9Þ

The equation above finds estimates under policy p by taking the difference between

the action-value function Qp ak , skð Þ and the value function Vp(sk). The former repre-

sents the expected return of taking an action in a state under policy p. This is esti-

mated using the discounted returns from the trajectories. The latter is the expected

return of being in a state following p and is estimated using the output from the value

neural network. Trust regions in PPO stabilize by limiting the divergence between

new and old policy as drastic changes may destabilize learning. Gated Recurrent

Units were implemented as layers for both the policy and value function networks as

their memory gates can assist during training when given sequential data. This is

achieved by combining old information that still may be useful with new information
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when capturing temporal dependencies between state-action-reward triplets (Chung

et al, 2014).

The algorithm endured training over 100,000 episodes, during which trends in

total reward and policy training loss were analyzed across episodes. Upon comple-

tion of training, the optimized policy was saved, and the environment was reset to its

initial state (Episode 1). Using the saved policy, the algorithm was further evaluated

over an additional 10,000 episodes. During these episodes, the goal was to identify

subsets of test items that satisfied several key conditions: the standard error of ability

estimation SE û
� �

\0:236, fewer than 240 items used, and adherence to domain and

difficulty constraints. Subsets meeting these criteria were saved for subsequent cali-

bration and estimation of û and SE(û) to validate their precision and ensure they

maintained psychometric rigor.

Mixed Approach

In this mixed approach, the DRL maintained mostly the same infrastructure with the

major change being the addition of item information as a reward-shaping tool. Using

the 3PL item parameters and updated (theta) value at each step facilitated by

Equations (4) and (5), item information values could be estimated for the following

current (theta) value:

Iv uð Þ = a2
i

(pi uð Þ � ci)
2

1� cið Þ2pi(u)(1� pi(u))
ð10Þ

where pi uð Þ= ci + (1� ci)s(ai(u� bi)) ð11Þ

During the first step when no items have been administered, the algorithm assumes

the simulated student’s û = 1:25. This was chosen due to it being the median of our

allowed range for û. Even though Iv uð Þ values were estimated, this algorithm did not

simply administer the item with the highest Iv uð Þ value through some greedy method.

Instead, the calculated Iv uð Þ values were used to shape the reward system of this

mixed DRL using

rinfo
t = aIv(ût) ð12Þ

rt = rbase
t + rinfo

t = rbase
t + aIv(ût) ð13Þ

Here, r
info
t represents the added bonus for administering the item providing the most

information for the estimated ability level in the current state, Iv(ût), while a is a

small weighting constant used to control how much influence this added information

bonus has on learning. Now the total reward at each time step t becomes (13) where

the base reward supplied by the original architecture, rbase
t , is shaped by the informa-

tion bonus. In doing so, the general benefits of DRL are maintained while the priori-

tization of high information items may engender faster convergence to an optimal
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policy and solution. The training and testing of the mixed DRL also lasted 100,000

and 10,000 episodes, respectively. Like the implicit DRL, any of the episodes during

the testing phase that satisfied SE û
� �

\0:236 were saved for review.

Heuristic Approach

The heuristic approach was facilitated through the use of the TestDesign package in

R (Silva,van der Linden, & Ortiz, 2019). A shortened test was to be assembled using

the Mixed Integer Programming framework given specific total item constraints as

well as the existing domain and difficult representation constraints. The optimization

function sought to maximize the cumulative item information of the selected items:

max
XN

i = 1

�Iixu ð14Þ

where xu is a dichotomized variable having the values of 0 or 1 signaling item i was

not or was selected, and �Ii is the mean information function value for item i. Given

its heuristic nature, a shortened form would only be saved if it met all the constraint

requirements unlike either of the DRL approaches which may flag certain subsets of

items that do not meet all requirements if the outcome leads to a larger total reward.

If any subsets of items were found using TestDesign, their performance would be

assessed through the estimation of SE(û) using the mirt package (Chalmers, 2012).

The search for a shortened test would start at the highest multiple of six being 234 so

it would be possible for the equal domain representation constraint to be met. If this

subset of items met all other constraints and requirements, the next smallest multiple

of six would be tested. This process would be repeated until a viable shortened test

form could not be found.

Results

Implicit DRL

The total reward for each episode of the implicit DRL is presented in Figure 1, with

fluctuations indicating the algorithm’s exploratory process in searching for an optimal

policy. The predominance of relatively high reward values suggests that a viable pol-

icy may have been identified early in the training process. Figure 2 illustrates the loss

values across episodes of the implicit DRL, providing insight into the convergence of

the policy optimization. The loss function for the policy is mathematically defined as:

� 1

M

XM
m = 1

log(pm(ak jsk)A(sk , ak)) ð15Þ

Here pm(ak jsk) is the probability of taking action ak given state sk . The advantage

of the action in that state is A(sk , ak), while M is the number of samples. This loss
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function encourages the policy to take actions that are better than the average action

for a given state. The decreasing trend in loss indicates policy improvement and the

ability to achieve higher expected rewards compared to an untrained or less trained

Figure 1. Implicit DRL total training reward by episode.
Note. The x-axis represents the sequential episode numbers during training, while the y-axis indicates the

total reward achieved after each respective episode.

Figure 2. Implicit DRL total training loss by episode.
Note. The x-axis represents the sequential episode numbers during training, while the y-axis indicates the

total loss achieved after each respective episode.

Zoucha et al. 17



policy. Both the reward and loss plots exhibit oscillations around their respective

maximum and minimum points. These fluctuations reflect the ongoing balance

between exploitation and exploration inherent to temporal difference learning.

The results demonstrate the utility of the DRL, as they indicate a suitable policy

for administering test items was discovered and optimal actions were reinforced while

still allowing for exploration.

Across the 10,000 additional episodes conducted using the trained policy, none of

the generated item sets fully satisfied all the desired specifications but there were

5,244 instances in which a subset of items yielded an SE û
� �

\0:236. The 50 smallest

subsets ranged from 97 to 140 items although none met the domain representation

requirements and only 2 met the difficulty requirements. Of these 50 subsets, those

ending with positive reward values had total items ranging from 131 to 140. The sub-

set with the largest total reward at the end of the episode had a total of 181 items.

Together, these results tell us that while the implicit DRL learned fewer total items

and led to larger rewards later on, it also realized trying to achieve the domain and

difficulty at each step provided more immediate positive feedback. The final values

for û and SE(û) were 21.51 and 0.22, respectively, for the subset with the largest

cumulative reward.

The smallest subset with a total of 97 items had final values for û and SE(û)20.92

and 0.22, respectively, and accumulated 287 total reward but did not meet either the

domain or difficulty representation criteria. This subset had domain ratios of 0.29,

0.57, and 0.14 for 1, 2, and 3, respectively, and difficulty ratios as 0.164, 0.113,

0.196, 0.196, 0.186, and 0.144 for 1, 2, 3, 4, 5, and 6, respectively. Of the items

selected, the discrimination parameter (a) ranged from [0.63, 3.16] with a mean of

1.14, the difficulty parameter (b) ranged from [22.715, 1.868] with a mean of

20.656, and a guessing parameter (c) ranging from [0.011, 0.396] with a mean of

0.227. Overall, these items tend to have good discrimination. The negative mean of

the difficulty parameter is well suited for measuring lower ability levels but the range

for difficulty suggests it has enough variation to measure other levels of test-takers.

Lastly, the moderate guessing parameter indicates items are not excessively guessed.

Therefore, this subset with the fewest items achieved the desired precision due to its

clustering around moderately high discrimination, predominately lower difficulty

questions matching the level of the simulated test-taker with a good mix of more

challenging items, and a middle-ranged guessing parameter. It is thus hypothesized

that efficient measurement happens when items have high discrimination, difficulty

that mostly matches the ability of the test-taker, and a moderate guessing rate.

Table 1 lists the characteristics of four subsets that were of most interest, being the

subset providing the highest total reward, the subset providing the lower total reward,

the subset that used the least number of items, and the subset whose û = � 1:25, or

the median ability level of the average test-taker from previous administrations. This

table includes final estimates for û and SE(û), the mean and range of the 3PL para-

meters a, b, and c, as well as the ratios for the structural constraints domain and diffi-

culty representation.
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Despite being able to highlight some of the learning process and identifying char-

acteristics of a test which provides efficient measurement, these findings stress a criti-

cal limitation: the restricted size of the item bank used in this study. Expanding the

item bank could allow for a more extensive exploration of potential subsets that might

better align with all predefined constraints.

Mixed DRL

The total reward for each episode of the mixed DRL is presented in Figure 3. Unlike

the implicit DRL, the trend for total reward by episode appeared to rise slower and

large spike before leveling out to fluctuate around a local maximum. This could be

explained by the addition of item information in reward shaping. The lower values

near the beginning illustrate its lack of knowledge about the environment while the

short spike could indicate instances where the algorithm found small subsets of items

that meet the desired SE(û) prior to being more influenced to select items providing

more information. Where the influence of item information and perhaps structural

constraints come to exist may start right before the 20,000 episode mark near the

50,000 episode mark we see the algorithm found what it believed to be a policy that

struck the best balance between all of the relationships within the environment. The

total loss by episode trend for the mixed DRL shown in Figure 4 is more similar to

the trend for loss seen in the implicit DRL except the mixed DRL did not have high

loss values near the beginning portions of its learning. This could indicate that the

push to choose items with higher information values leads to more conservative

Figure 3. Mixed DRL total training reward by episode.
Note. The x-axis represents the sequential episode numbers during training, while the y-axis indicates the

total reward achieved after each respective episode.
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exploration. This conservative exploration and influence of the item influence may

have also led to the difference in saved item subsets between the mixed and implicit

DRL.

The application of the mixed DRL did not result in any subsets being saved that

used less than 240 items. This could be due to the information bonus overshadowing

the final rewards. It is possible the agent kept administering more items rather than

terminating earlier because it learned to focus on the more immediate reward of pick-

ing the item with the highest information. This could also explain why in the reward

plot in Figure 3 for the mixed DRL we saw the local maximum it settled on was

much lower than the maximum it found relative to where the reward plot in Figure 1

for the implicit DRL. This overfitting to local gains appeared despite trying to apply

small shaping values to (equation) meaning other methods like penalization might be

needed to engender more exploration. The total amount of items available for test

construction could be the main bottleneck for exploration as well.

Test Design

The heuristic approach also did not lead to any subsets being saved for review. Being

the strictest of the three approaches, it makes sense this one without any mechanism

for exploration did not produce any subsets as it was required to meet the structural

requirements of domain and difficulty representation. This result is supported by the

implicit DRL as that approach did not yield any subsets that were a multiple of six

which met all other structural or precision requirements either. Therefore, such a

Figure 4. Mixed DRL total training loss by episode.
Note. The x-axis represents the sequential episode numbers during training, while the y-axis indicates the

total loss achieved after each respective episode.
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subset that can be created from one test form may not exist and 240 items appear to

be the optimal total given the constraints and limitations.

While no approach could find a smaller subset of items that had all the desired

qualities, these results illustrate the effectiveness of the DRL algorithm in leveraging

temporal difference learning to refine its policy and reinforce optimal actions over

time. Through the implicit DRL, we could also at least identify characteristics of

items which led to precise ability estimates in a shorter fashion. The scope of learning

was constrained by the limited resources provided, as only items from a single exam

form were available. The addition of more items to the item bank could enhance the

algorithm’s ability to explore and identify subsets meeting all desired specifications.

This limitation highlights the need for larger datasets in future studies to fully harness

the potential of DRL algorithms in optimizing test design.

Discussion

RL is transforming the field of testing by enabling adaptive assessment systems that

tailor themselves to individual learners’ abilities and needs (Wang et al., 2024).

Traditional testing systems often rely on static question sets that do not dynamically

adjust to the examinee’s responses. RL introduces a significant paradigm shift by

allowing tests to adapt in real time (Liu et al., 2024). For example, RL algorithms can

analyze an examinee’s response patterns and dynamically select questions of appro-

priate difficulty to maintain an optimal challenge level (Li et al., 2023). Furthermore,

RL-driven adaptive tests improve efficiency by reducing the number of questions

required to reach reliable conclusions, thus shortening test durations while maintain-

ing or enhancing precision.

Another major advantage of RL in testing is its ability to focus on the underlying

processes behind responses rather than just the answers themselves. By modeling

test-takers’ cognitive and behavioral patterns, RL can provide insights into problem-

solving strategies, misconceptions, and areas requiring targeted intervention (Islam

et al., 2021). For instance, in CAT, RL algorithms leverage a reward-based frame-

work to optimize question selection, aiming for both mastery learning and diagnostic

insights. Beyond individual assessments, RL-based testing systems contribute to

large-scale education by continuously improving the question bank through feedback

loops. Questions that fail to provide discriminatory power or are consistently

answered incorrectly can be flagged for review or replaced, creating a self-improving

testing ecosystem. Moreover, these systems enable the creation of longitudinal pro-

files of learners, helping educators track progress over time and tailor future instruc-

tion to maximize educational outcomes (Wang et al., 2024; Li et al., 2023).

A well-structured RL algorithm has the potential to address complex challenges,

such as optimizing the test length for high-stakes examinations like the NBCE Part I.

By utilizing dynamic programming and policy optimization techniques, RL can

effectively identify subsets of test items that meet specific constraints related to con-

tent coverage and difficulty. However, the efficacy of such algorithms is inherently
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tied to the availability of computational resources and the robustness of the training

environment. Localized training, while accessible, often falls short in handling the

extensive computational demands required for training and optimizing RL models.

In this context, while the algorithm demonstrated moderate success in identifying

subsets of test items, current limitations necessitate retaining the test length at 240

items. This ensures the examination continues to fulfill its content and difficulty

requirements until further advancements in algorithm refinement and computational

scalability are achieved.

In terms of test length optimization, DRL provides powerful tools for achieving

an ideal balance between brevity and measurement accuracy. Through its reward-

based framework, DRL algorithms can prioritize item selection strategies that mini-

mize the number of questions administered while still achieving precise estimates of

test-taker ability. By leveraging partial information at each stage of the test, DRL

models can dynamically determine when the addition of more items ceases to signifi-

cantly improve the measurement outcomes, thus enabling early termination without

compromising validity. In addition, DRL systems can simulate and analyze various

test configurations, identifying optimal stopping rules and conditions that align with

predefined accuracy thresholds. This capacity to adaptively optimize test length not

only enhances efficiency but also reduces test fatigue for examinees, improving their

overall testing experience. Ultimately, the flexibility and learning capabilities of

DRL make it an indispensable tool for modernizing and refining the test construction

and administration process in educational and professional contexts.

Future research should prioritize expanding the item bank to include a more

diverse set of questions, allowing the algorithm greater flexibility in forming optimal

test configurations. This expansion would enable the exploration of broader combina-

tions, potentially enhancing the algorithm’s performance. In addition, the integration

of cloud-based or high-performance computing infrastructure could provide the com-

putational capacity needed to train and refine the algorithm efficiently. Alternative

strategies, such as fine-tuning hyperparameters or adopting advanced model architec-

tures, should also be explored to determine whether these adjustments yield improved

outcomes. While multiple iterations of the RL algorithm were tested in this study, the

scope for further experimentation remains significant, as alternative configurations

may uncover superior solutions. These advancements will be critical for ensuring that

future implementations can optimize test lengths while preserving the validity and

reliability of the assessment.
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