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Abstract

Maintaining consistent item difficulty across test forms is crucial for accurately and
fairly classifying examinees into pass or fail categories. This article presents a practical
procedure for classifying items based on difficulty levels using functional data analysis
(FDA). Methodologically, we clustered item characteristic curves (ICCs) into difficulty
groups by analyzing their functional principal components (FPCs) and then employed
a neural network to predict difficulty for ICCs. Given the degree of similarity between
many ICCs, categorizing items by difficulty can be challenging. The strength of this
method lies in its ability to provide an empirical and consistent process for item classi-
fication, as opposed to relying solely on visual inspection. The findings reveal that
most discrepancies between visual classification and FDA results differed by only one
adjacent difficulty level. Approximately 67% of these discrepancies involved items in
the medium to hard range being categorized into higher difficulty levels by FDA, while
the remaining third involved very easy to easy items being classified into lower levels.
The neural network, trained on these data, achieved an accuracy of 79.6%, with mis-
classifications also differing by only one adjacent difficulty level compared to FDA clus-
tering. The method demonstrates an efficient and practical procedure for classifying
test items, especially beneficial in testing programs where smaller volumes of exami-
nees tested at various times throughout the year.
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Introduction

Testing in the professions has a long history, originating in Imperial China where the

selection of civil servants was based on standardized examinations (Zwick, 2002).

Today, credential testing serves as a crucial source of evidence for demonstrating

professional competencies and qualifications (Buckendahl, 2017). Assessments are

also prevalent in educational settings as they serve to measure student learning and

ability (Bennett, 2011; Suskie, 2018). A widely used method for estimating ability

levels, and consequently determining assessment-based outcomes, is item response

theory (IRT; Lord & Novick, 1968). Given that student advancement depends on the

precision of these evaluations, their accuracy is of critical importance. To effectively

determine mastery of a subject matter on a test, the exam must include a wide range

of test items that represent various ability levels (Kline, 2015; Mislevy, 1992).

The region of greatest importance along the test continuum would be those areas

closest to the passing thresholds (Muijtjens et al., 2003). Furthermore, to assure score

comparability, structural constraints are established such that each test form produced

has similar psychometric properties (Kolen & Brennan, 2014).

In addition, to ensure that a test remains both accurate and fair across different

test-taking groups, one important factor is the consistency of its difficulty level

(Embredson & Reise, 2000; Kolen & Brennan, 2014). In operational testing pro-

grams, maintaining difficulty consistency involves calibrating the items and classify-

ing them across the difficulty spectrum so that the test has a balanced mix of easy,

medium, and hard questions. If the ratio of these misclassified items fluctuates, it

can skew the results, undermining the reliability of the test as an accurate measure of

ability. Variability in classification accuracy across different item clusters may raise

concerns about the validity and fairness of the test. In particular, if certain difficulty

levels or item characteristics consistently lead to misclassification, the model may

fail to provide a fair assessment of examinee performance across the ability spec-

trum. This inconsistency could compromise both the test’s validity—its ability to

measure what it is intended to measure—and its fairness, particularly if specific

groups of examinees are more likely to encounter misclassified items, leading to

biased outcomes.

Test Construction and Item Characteristic Curves

Item Characteristic Curves (ICCs; Lord, 1975; Rosenbaum, 1987) play a fundamental

role in test construction, particularly within the framework of IRT. ICCs describe the

relationship between an individual’s estimated ability level and the probability of cor-

rectly answering a specific test item. Depending on a specific IRT model, each curve

may be modeled using three key parameters: the difficulty of the item, the item’s

430 Educational and Psychological Measurement 85(3)



discrimination, and the guessing factor (Hambleton et al., 1991). The difficulty para-

meter (the equivalent of an intercept) shifts the curve along the ability axis, indicating

the level of ability at which the item has a 50% chance of being answered correctly.

The discrimination parameter (an equivalent of slope) defines how steeply the prob-

ability increases as ability increases, with steeper curves indicating that the item is

more effective at differentiating between test-takers of varying abilities. Finally, the

guessing parameter accounts for the likelihood of low-ability individuals guessing the

correct answer (Baker, 2001). Easier questions will tend to come earlier on the x-

axes, whereas more difficult questions will have corresponding ICCs more to the

right on the axes (Lord, 1977).

In the process of test construction, ICCs are employed to ensure that test items

collectively provide appropriate measures across a wide range of ability levels. By

examining the ICCs of individual items, test developers select or modify items to

match the intended difficulty and discrimination characteristics of the test. For

instance, items with high discrimination values are often preferred because they help

better distinguish between test-takers with similar but slightly different ability levels.

At the National Board of Chiropractic Examiners (NBCE), characterization of

items into one of the difficulty sub-groups is typically based on items’ historical per-

formance (item-level statistics) and visual inspection of the ICCs. Specifically, the

items’ difficulty subgroup is decided by their maximum information theta point

(MIT; Birnbaum, 1968, p. 464). Items’ MIT between –3 and –2 are assigned to the

very easy subgroup; items’ MIT between –2 and –1 are assigned to the easy sub-

group; items’ MIT between –1 and 0 are assigned to the moderately easy subgroup;

items’ MIT between 0 and 1 are assigned to the moderately hard subgroup; items’

MIT between 1 and 2 are assigned to the hard subgroup; and items’ MIT between 2

and 3 are assigned to the very hard subgroup.

Classifying test items into difficulty levels based on a single set of parameters,

especially for the operational programs with a relatively small number of test-takers,

may be problematic due to the issues related to statistical reliability and stability. The

lack of ability-level diversity in small samples may pose another challenge. A limited

number of test-takers may not represent the full range of abilities expected in the

broader testing population. If the sample is skewed toward a particular ability level

(e.g., mostly high-ability or low-ability test-takers), the difficulty estimates will be

biased, potentially causing the test to be over-calibrated or under-calibrated for that

specific group, rather than reflective of a more diverse, general population. This can

impair the test’s ability to assess all examinees fairly, ultimately reducing the test’s

effectiveness in measuring the intended construct. However, by reviewing ICCs,

which are functions of all three item-level parameters revealing the probability of

answering an item correctly across the entire ability spectrum, we are able to make

more informed decisions about item behavior.

A similar approach was developed by Belov (2021) proposing the use of item dif-

ficulty modeling to predict statistical parameters of an item. The author proposed

predicting a discrete ICC based on softmax classification. This method leverages the
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one-to-one mapping between a monotonically non-decreasing ICC and a probability

mass function (PMF). A neural network was trained using soft labels for each item,

achieved by mapping the ICCs to PMFs.

A different study introduced penalized splines for estimating growth curves using

data collected over time, explaining the flexibility of splines and how penalized

spline models balance model fit and smoothness by incorporating a penalty term.

The authors described piecewise linear models, higher-order splines, and the use of

linear mixed-effects models for estimating penalized splines, addressing technical

aspects such as hypothesis testing and confidence intervals (Suk et al., 2019).

Functional Data Analysis

Assuming continuity and smoothness in ICCs allows for application of functional

data analysis (FDA; Kokoszka & Reimherr, 2017; Ramsay & Silverman, 2002) for

the purpose of item classification based on difficulty estimates. FDA is particularly

useful for analyzing data collected over continuous domains, such as time, space, or

frequency, where observations are not isolated points but entire processes. FDA

focuses on identifying patterns, trends, and relationships within these continuous

datasets, often revealing insights that are not apparent in traditional data analysis

(Wang et al., 2016). Through FDA, traditional scalar statistical methods such as lin-

ear models and principal component analysis can be generalized to data represented

in infinite dimensional Hilbert space. In practice, a sample of curves is observed

along a finite range of a domain where a semiparametric or nonparametric method is

used to reconstruct a functional form from a set of discrete data points (Jacques &

Preda, 2014). Here, densely collected repeated measures across a continuum such as

time (t) are viewed as a single set (i) making up one observation Xi(t) (Hall et al.,

2006). Functional data are often represented using basis expansions, approximating

functions through a linear combination of a suitable basis such as B-splines, Fourier,

or wavelets (Ramsay & Silverman, 2005; Jacques & Preda, 2013). Partitioning func-

tional data by basis expansion may reduce measurement error while maintaining

functional structures (Abraham et al., 2003).

FDA offers two key advantages: it imposes fewer restrictive statistical assump-

tions and leverages richer information when drawing inferences. By focusing on con-

tinuous data structures such as curves or functions, FDA can model complex

phenomena more flexibly and comprehensively, allowing for more accurate insights

than traditional methods that rely on discrete data points and often stricter assump-

tions (Fortuna & Maturo, 2018; Ramsay & Silverman, 2005). Advances of modern

computing facilitate this expansion of application of FDA to high-dimensional data

(Hall et al., 2006; Shang, 2014). Functional principal components (FPCs; Benko

et al., 2009) are essential tools in FDA, as they capture the primary modes of varia-

tion within functional data, serving a critical function in dimensionality reduction

and feature extraction (Dai & Müller, 2018). The primary goal of functional principal

component analysis (FPCA) is to provide an optimal representation of functional
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data, making it one of the most widely used techniques for clustering and analyzing

functional datasets.

Recently, Engelhard (2023) introduced a functional approach for modeling unfold-

ing response data. In this study, FDA has been used for examining cumulative item

response data. Seven decision parameters that can provide a guide to conducting

FDA were described. These decision parameters were illustrated with real data using

two scales that were designed to measure attitude toward capital punishment and atti-

tude toward censorship. The analyses suggested that FDA offers a useful set of tools

for examining unfolding response processes. Another research used functional classi-

fication to conduct morphological analysis of electrocardiographic (ECG) curves.

The authors employed clustering techniques to group patients based on the shape of

their ECGs, independent of clinical diagnosis. The study demonstrates that analyzing

both the ECG curves and their first derivatives improves classification accuracy, and

it proposes this clustering approach as a potential semi-automatic diagnostic tool for

distinguishing between normal and pathological ECG patterns (Ieva et al., 2013).

Clustering

Clustering could be seen as an unsupervised learning process aiming to partition data

into homogeneous sub-groups (Bolleddu, 2022). After clustering, observations within

each cluster are similar to each other while being dissimilar to out-of-group clusters

(Piernik & Morzy, 2021; Wu et al., 2021). Like centroids, principal components can

be utilized to form distinct clusters of examples due to their orthogonality, which

helps in separating the data into independent and non-overlapping groups (Hall &

Hosseini-Nasab, 2006).

When applied to functional data, clustering algorithms are able to find representa-

tive curves corresponding to different modes of variation (Tarpey & Kinateder,

2003). Functional clustering methods can generally be classified into four main cate-

gories: raw data clustering, filtering methods, adaptive methods, and distance-based

methods. Raw data clustering operates by directly grouping curves based on their

observed values. In contrast, filtering methods first approximate the curves using

basis functions or eigenfunctions, after which clustering is performed on the basis of

expansion coefficients or principal component scores, as these scores reflect the

degree to which observations align with each FPC. Adaptive methods employ prob-

abilistic models to cluster the basis expansion coefficients, FPC scores, or the curves

themselves. Finally, distance-based methods extend traditional multivariate cluster-

ing techniques to functional data by grouping curves according to a chosen distance

metric (Jacques & Preda, 2014).

Clustering is often used as a preprocessing step to classification and is trusted as a

mechanism for improving classification quality (Khan, Baseer, & Javed, 2017;

Piernik & Morzy, 2021; Trivedi et al., 2015; Tsai et al., 2011). Piernik and Morzy

(2021) examined this hypothesis by applying a clustering algorithm to segment train-

ing data into groups, subsequently utilizing this information in various classification
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algorithms to predict test data labels. The classification algorithms employed, both

linear and nonlinear, included methods such as penalized multinomial regression,

Bayesian generalized linear models, and random forests, among others. Their find-

ings revealed that certain combinations led to performance improvements with no

cases of performance degradation overall.

Liao (2005) reviewed the application of clustering techniques to time series data

across various domains. In discussing model-based clustering methods, the author

highlighted neural network-based clustering as a prominent approach for future

research and development. Furthermore, in searching for novel approaches to cluster-

ing, Marcoulides and Trinchera (2024) introduced an algorithmic method for detect-

ing unobserved heterogeneity in longitudinal growth data. The authors suggested

using natural cubic smoothing splines to cluster individuals based on their growth

trajectories, avoiding restrictive assumptions often imposed by traditional models.

The study highlights the method’s utility in accurately capturing individual differ-

ences in growth trajectories without relying on predefined class structures, offering a

valuable tool for behavioral and social science research.

Neural Networks

Neural networks are a class of machine learning (ML) models inspired by the struc-

ture and function of the human brain, designed to recognize patterns and make pre-

dictions based on data (Abdi et al., 1999; Gurney, 2018; Haykin, 1994). Comprising

interconnected layers of artificial neurons, neural networks learn to map inputs to

outputs through a process of adjusting weights based on errors in predictions (Müller

et al., 2012).

In neural networks, the architecture typically consists of three main types of

layers: input layers, hidden layers, and output layers, each serving a distinct purpose

in the overall functioning of the model (Goodfellow et al., 2016). The input layer is

the first layer in a neural network and is responsible for receiving the raw data that

will be processed. Each neuron (or node) in the input layer corresponds to one fea-

ture of the input data. For example, in an image classification problem, the input

layer might have one neuron for each pixel in the image. The input layer passes these

data to the subsequent layers without performing any computations (LeCun et al.,

2015).

Hidden layers sit between the input and output layers and are where most of the

computation in a neural network occurs. These layers consist of neurons that apply

transformations to the input data using a set of weights and biases, followed by an

activation function that introduces non-linearity into the model. This non-linearity

allows the network to learn and model more complex patterns in the data. A network

can have one or more hidden layers, and deep neural networks typically have many

such layers, enabling them to capture intricate relationships in the data (Goodfellow

et al., 2016; Nielsen, 2015).
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The output layer is the final layer of a neural network and produces the prediction

or classification result. In a classification task, the output layer’s neurons represent

the possible classes, and their values correspond to the predicted probabilities for

each class. For regression tasks, the output layer may contain one or more neurons

representing the predicted continuous values. The type of activation function used in

the output layer depends on the task—softmax is commonly used for multi-class clas-

sification, while linear functions are used for regression (Hastie et al., 2009).

Key developments, such as backpropagation and gradient descent, have enabled

the training of large-scale neural networks, making them one of the most powerful

tools in modern AI research (LeCun et al., 2015). As data move from the input layer

through to the output layer, each neuron the data passes through applies a weighted

sum of its inputs and an activation function to introduce non-linearity and produce an

output. During model training, the final output is compared to true target values, and

loss is computed through a loss function. Backpropagation calculates the gradient of

the loss function with respect to the network’s parameters, and gradient descent uses

these gradients to update parameters with the goal of reducing loss and improving

model performance. These neural networks have found widespread application across

diverse fields, including image recognition, natural language processing, and predic-

tive analytics, owing to their capacity to generalize from data and effectively model

nonlinear relationships (Goodfellow et al., 2016).

Neural networks are powerful tools for classification tasks, capable of learning

intricate decision boundaries and handling complex relationships in data. They offer

advantages over other methods by automatically learning relevant features and cap-

turing sophisticated patterns, eliminating the need for manual feature engineering

(Swingler, 1996).

Current Study

The objective of this study was to introduce a robust and systematic approach for

classifying test items into predetermined difficulty levels, ensuring the structural

integrity and fairness of assessments used to categorize examinees into pass or fail

categories. The study addresses the challenge of item categorization, particularly

given the similarity in shape of ICCs. By applying FDA to group items according to

their FPCs, the study aims to offer an empirical alternative to traditional, more sub-

jective visualization-based methods of categorization. Furthermore, by basing deci-

sions on item behavior across the entire ability spectrum, rather than solely on the

parameters obtained from the 3-parameter logistic (3PL) model, the clustering algo-

rithm gains a more comprehensive understanding of how each item functions. This

approach allows the algorithm to consider the interplay between the discrimination,

guessing, and difficulty parameters, providing a more detailed view of item perfor-

mance. As a result, the algorithm is better equipped to identify and categorize items

with similar overall behavior patterns, leading to more accurate clustering.
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In addition, 3PL IRT models (explained in the next section of this article) require

larger sample sizes for stable parameter estimation. One potential solution is to use a

less-complex IRT model, such as the 2PL or Rasch models, but this comes at the cost

of relying solely on the difficulty and discrimination parameters, or just the difficulty

parameter in the case of the Rasch model. Our proposed approach offers an alterna-

tive that avoids this tradeoff.

Furthermore, the study assessed the effectiveness of this FDA-based clustering

method by integrating a neural network trained to predict ICCs. The secondary

objective was to evaluate the accuracy and reliability of the neural network in repli-

cating the FDA-driven classification process. The results of the analysis will provide

insights into how closely the neural network aligns with the FDA method, offering a

practical solution for large-scale testing programs, particularly in today’s contexts

when the rapid and accurate assessment is essential for timely and defensible results.

Method

In this study, we outlined the functional classification process which consists of three

main parts. A clustering method based on FPCs, which was applied on the set of

ICCs to identify distinctive patterns among the curves (Fortuna & Maturo, 2018).

Clustering provided an effective approach for distinguishing our sample functions,

allowing for empirical classification even when the ICCs exhibited similar shapes or

locations. Next, clustered groups were given a difficulty level labeled matching to

those established by the operational testing program. Once established, a functional

regression was fit to evaluate the accuracy of the functional representation of the

ICCs and how well the assigned categorical membership through clustering repre-

sented the data.

Data

The data for this study were drawn from the three most recent operational adminis-

trations of the NBCE basic science (Part I) exam (National Board of Chiropractic

Examiners [NBCE], 2024). The dataset included 240 operational, multiple-choice

items, covering a range of topics across various clinical areas.

Discretizing ICCs and Finding Mean Curves of Original Groups. A 3PL IRT model was

fitted to the data and used to estimate the discrimination (a), difficulty (b), and gues-

sing (c) parameter values for each item in the dataset. A sequence of length 1,000 for

ability (u) was produced to define ability levels between 23 to 3. The 3PL function

is denoted as follows:

P(Xijui) = cj + (1� cj)
1

1 + e�aj(ui�bj)
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Inputting all values into the function, discretized ICC(u)s were produced for each

item and saved. Each ICC was a sequence of realized probabilities of getting an item

correctly conditioned on values of u along the ability domain. All 240 ICCs had been

assigned difficulty labels, which were determined based on the item parameters,

visual inspection of the curves, and discussions among the test development team.

There were six coded item difficulty levels in total: very easy, easy, moderately easy,

moderately hard, hard, and very hard. The mean curves for each visually determined

group were established and later compared to the groups generated through func-

tional clustering.

Creating a Functional Data Object. Functions from the fda package in R (Febrero-

Bande & De La Fuente, 2012) were used to facilitate the FPCA and regression. To

use these functions, the matrix of ICCs needed to be converted into functional data

objects through the basis expansion and smoothing techniques. Basis expansion

allows for representing the discretized functional data matrix in the form of a linear

combination,

Y(u) =
XV

v = 1

uvgv(u)

where gv(u) are the v basis functions of u and have corresponding coefficients uv that

project the discretized curves into Hilbert space, representing them in a reduced form

that best maintains information of the true curves. For scalar data, basis functions are

fixed, whereas basis functions used for functional data vary across the entire domain.

The possible number of basis functions that can be used to represent a set of func-

tional observations ranges from 1 to U where U = 1,000, or the length of each ICC

in this study. Choosing a number which is too small may result in a loss of informa-

tion while picking V = U could lead to the inclusion of noise.

As a possible remedy or counterbalance, a smoothing parameter l was applied. In

FDA, smoothing often involves adding a penalty term to the least square minimiza-

tion problem used to estimate the coefficients uk:

min
uv

ð3
�3

(Y(u)�
XV

v = 1

uvgv(u))2du + lS
V
v = 1

ð3
�3

g00v uð Þ
� �2

du

0
@

1
A

2
4

3
5

The first part of the equation calculated the sum of squared residual evaluated across

the domain of u. Given these are functional observations, integrating results in a sca-

lar metric can be useful for representing the difference between observed and fitted

curves. In the second half of the equation, g00v (u) represents the second derivative of

the v basis functions evaluated over u. This penalty term sums up the squared curva-

ture across the domain to give a single scalar value representing the overall roughness

of the function. Overall, the equation above represents the first step of a two-part

optimization problem. First, for a given l, coefficients uv must be found such that
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they minimize the sum of squared residuals plus the penalty term. Second, the results

of each minimization facilitated by a set of lambdas are compared by calculating the

generalized cross-validation measure (GCV). The GCV, developed by Craven and

Wahba (1978), was applied through the lambda2gvc() function in the fda package.

The main benefit of GCV over traditional cross-validation is when applied to com-

plex models or large datasets, it reduces computational burdens by computing its

metric through a single pass. A single pass refers to fitting a model without leaving

out any subsets of data. The GCV score of the fitted model corresponding to l is cal-

culated using the following formula:

GCV lð Þ= n

n� df lð Þð Þ2
SSE(l)

In the formula, n is the number of observations, df(l) is the effective degrees of free-

dom depending on l, and SSE(l) is the sum of squares error (SSE) for the model fit

with l. Degrees of freedom are the number of independent pieces of information that

go into the estimation of parameters. A larger df(l) indicates a more complex model

while smaller values indicate simpler models. By including effective degrees of free-

dom, GCV penalizes more complex models to help prevent overfitting. The value of

l that minimizes the GCV measure is selected as the optimal smoothing parameter

and applied to create the smoothed functional data object.

Finding FPCAs and Applying Fuzzy Clustering. Upon smoothing the functional ICC

object, six FPCs were extracted. These FPCs were then used in fuzzy clustering to

categorize ICCs into one of six groups by following the filtering functional classifi-

cation method. The choice of six FPCs aligns with the number of difficulty levels

previously established by the testing program (difficulty levels). Fuzzy clustering

was chosen over deterministic algorithms as it clusters based on degrees of member-

ship, rather than categorizing with absoluteness. Thus, each ICC has a membership

value associated with an FPC-based cluster, indicating the degree of belongingness

to each cluster. Given that adjacent difficulty levels often have operational overlap,

fuzzy clustering fits the context of these data (Srinivsa et al., 2005). The probabilistic

assignment introduces a degree of variation, serving as a proxy for the influence of

an item’s classification history across different administrations on its categorization.

While an item might perform unusually in a single administration due to external

factors, it is rare for a test construction team to drastically change an item’s difficulty

level if its previous designation was consistent. Therefore, incorporating a controlled

level of variation through probabilistic clustering simulates the influence of potential

factors that could engender class movement among items. This was facilitated

through the Fclust() function in R’s fclust package (Ferraro et al., 2019).

Comparing Group Assignments. After identifying the six clusters and assigning each

ICC to one of them, the clusters can then be labeled according to their respective dif-

ficulty levels. The designation of a difficulty was decided by comparing the shape of
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the mean curves produced by grouping through the original visualization method ver-

sus mean curves of the ICCs clustered according to the FPCs. For example, if the

mean curve of cluster 1 best resembled the mean curve of the previously labeled very

easy items, cluster 1 was designated as the very easy item cluster for the rest of the

analysis. This process was repeated until all clusters were labeled. Discrepancy ratios

were then calculated to assess the level of agreement between the two methods on

the difficulty of an item based on its ICC.

Fitting a Functional Regression. Next, a functional regression was fit. With a functional

regression estimated, the SSE can be reviewed, and a permutation F-test, along with

post hoc t-tests, was applied. The SSE served as an indicator of the information loss

incurred when fitting a model to the observed ICCs. The permutation F-test illu-

strated whether and where statistical differences existed between mean curves repre-

senting the clustered difficulty groups of ICCs.

The F-observed function and the two critical F-functions were plotted together.

Significant differences in functional behavior among the six ICC cluster groups were

observed at points where the F-observed values exceeded the critical F-thresholds.

This comparison between difficulty groups assesses the impact of cluster group mem-

bership and identifies the intervals where the shape of ICCs within the same cluster

differs from those in other clusters. If F-observed function falls below the critical

region at any point, then there is no statistically discernible difference between the

functional form of each difficulty group at said point. If significance was found for

the permutation F-test, post hoc t-tests were performed for each pairwise cluster

group comparison. For these permutation t-tests, the alpha level was adjusted using

the Bonferroni method as such:

az = a=p

(Bonferroni, 1936).

Through basis expansion, functional data can be represented such that traditional

statistical models can be realized as following:

Yr(u) = b(u) +
XS

s = 1

Xr, s(u)bs(u) + er(u)

What should be noted is the equation above matches that of a multiple linear regres-

sion with the addition of (u) indicating the effect of bs changes at different points of

u. Here, Yr(u) represents the rth ICC the fitted model is predicting. The intercept

b0(u) is the baseline functional form for all ICCs. The design matrix Xr,s holds the

values 0 or 1 at the (r, s) indices. The binary indicator determines the group member-

ship of each ICC by controlling which functional coefficients are included in the

model when predicting an ICC. If Xr,s = 1, the sth functional coefficient bs(u) is

included in the model for the rth ICC, otherwise for Xr,s = 0, the corresponding bs(u)

is not included. The functional coefficients bs(u) represent the effect of each group

on the ICC. Unlike scalar regression, where the effects are fixed and changes to the
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predicted outcome are linear, in functional regression, the coefficients themselves are

functions. Consequently, the effect of an item with a specified difficulty—represented

on the ICC by the probability of answering the item correctly—changes, depending

on the value of u. The er is the rth error term corresponding to the rth curve.

Grid Search. This process requires the selection of hyperparameter values, which are

the number of basis functions used to represent the ICCs and the b functions denot-

ing the effect of cluster membership, as well as the smoothing parameter l. To deter-

mine the best value of hyperparameters for representation and model fitting, a grid

search was conducted. This grid search explored a range of initial values for the basis

functions and lambda, iterating through each combination to identify the one that

yielded the functional linear model with the lowest SSE. B-spline basis functions

were used for basis expansion, and values in the grid search ranged from 50 to 800

by 50. For l, a sequence of values from 0 to 10 by 1 were tested in conjunction with

the choices for number of basis functions. Restricting the hyperparameter values

within these trial ranges is considered reasonable, as they align with the current

understanding of the ICCs. Given the inherent smoothness of these functions, the

curves may be adequately represented with fewer basis functions, thereby reducing

computational costs. Furthermore, relatively low values of l were tested despite the

fact that l theoretically has no upper bound. Values closer to 1 prioritize a closer fit

to the data with minimal smoothing. The ICC-b-l combination that resulted in the

lowest SSE was subsequently utilized to carry out the aforementioned steps: repre-

senting the ICCs as functional data objects, extracting FPCs, and fitting the final

functional regression model.

Training and Applying a Neural Network Classifier. The final step was feeding a subset

of about 80% ICCs and their difficulty cluster classification values into a neural net-

work for training. The ratio of difficulties was maintained as best as possible in the

training process such that the neural network receives a similar proportion of very

easy to very difficult questions as was present on the original exam. During model

training, the learning process was monitored by visualizing changes in the categorical

cross-entropy loss function, commonly used in multi-class classification tasks where

labels are one-hot encoded, as is the case in this study, and was employed alongside

accuracy metrics. The equation for the categorical cross-entropy loss function is as

follows:

L = �
XR

r = 1

XC

c = 1

yr, clog(dyr, c )

The total loss L is computed as a summation over all items r and all categories c.

The values of yr, c are binary, taking the value of 0 or 1 to indicate whether the true

class label for item r corresponds to category c, while dyr, c represents the predicted

probability that item r belongs to category c. For each item, only the logarithm of the
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predicted probability corresponding to the true category of that item contributes to

the total loss. The loss for a single item can be calculated by taking the dot product

of two vectors, as follows:

If item r is in cluster 1! yr = 1 0 0 0 0 0½ �

Hypothetical predicted probabilities! ŷr = :5 :1 :1 :1 :1 :1½ �

L = � 1 � log :5ð Þð Þ + 0 � log(:1ð Þ) + . . . + 0 � log(:1)ð Þ= � log(:5)

The total loss is an extended formulation, summing over all items and iterating

through the specified number of epochs. This process allows for the identification of

potential learning issues, such as stagnation at local minima or maxima.

The neural network employed in this study consisted of four layers: an input

layer, two hidden layers with 256 and 128 neurons, respectively, and an output layer.

Given the relatively small dataset and the smooth nature of the ICCs, a highly dense

neural network was deemed unnecessary. The decreasing number of neurons from

the first to the second hidden layer reflects the belief that the most complex struc-

tures of the curves could be learned efficiently. Consequently, using a more complex

neural network was not considered a worthwhile investment of limited computational

resources. The ReLU activation function was applied to both hidden layers, while

the softmax activation function was used in the output layer to constrain cluster

assignment probabilities between 0 and 1.

To mitigate potential overfitting, dropout regularization was applied to the hidden

layers during training. This technique randomly deactivates subsets of neurons during

each training iteration, preventing the network from becoming overly reliant on specific

neuron groups. The trained network was subsequently tested on the remaining 20% of

the dataset without dropout, and accuracy metrics were evaluated to assess the net-

work’s effectiveness in classifying ICCs into the predefined functional cluster groups.

Results

Figure 1 presents the ICCs, while Figure 2 displays the mean curves for each diffi-

culty group categorized through visualization. As anticipated, the mean curves for

each difficulty group followed the expected patterns: for the easiest items, test-takers

with lower ability demonstrated a relatively high probability of answering correctly,

whereas for the harder questions, probabilities did not begin to increase until higher

ability levels were attained.

Upon running the grid search loop, the triplet producing the lowest SSE included

800 b-spline basis functions for representing the ICCs, 100 b-spline basis functions

for representing the beta functions, and l = 1. By tuning these specific hyperpara-

meter values to best represent the data, we ensured that the basis-expanded form of

the functions was optimized to preserve the maximum amount of information com-

pared to all other triplet combinations tested, as well as any default values automati-

cally assigned by the R functions used during the creation of functional objects.
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Figure 1. Two hundred forty Item Characteristic Curves.

Figure 2. Mean ICCs for Each Difficulty Based on Initial Classification Through Visualization.
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FPCA was then applied to the smoothed ICCs, Yr(u), where six FPCs were found.

Individual plots for each rotated FPC were generated, as shown in Figure 3. The

solid line represents one eigenfunction, while the lines made of ‘‘ + ’’ or ‘‘—’’ oscil-

lating around the solid line represent the variability around that eigenfunction at each

point along the x-axis u. On the y-axis, a large oscillation over a specific interval of u

indicates that the corresponding eigenfunction has a greater contribution to the

Figure 3. The Solid Center Lines Represent the Eigenfunction Corresponding to the 6th

Rotated FPC.
Note. The line of ‘‘–’’ and line ‘‘ + ’’ indicate the eigenfunction’s contribution to the variability of the data at

specified points/intervals.
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sample of ICCs within that interval. If the oscillation is small, the corresponding

eigenfunction contributes less to the variability at a specific point or interval. The

fourth FPC had the most variation which accounted for at 28.1%, with the largest

contribution being from u = [–2, 0], while the third FPC had the least variation at

3.4%.

Once the FPCs were identified, the corresponding FPC scores for all ICCs were

utilized for fuzzy clustering. After clustering the ICCs and assigning membership

categorizations, centroids for each cluster were determined by calculating six mean

functions for each cluster group. Figure 4 displays the plotted centroids. These cen-

troids were then used to label the difficulty levels of each cluster by comparing their

shapes to one another and to the mean curves from the initial groupings created

through visualization. Upon review, it was determined that Cluster 4 best represents

the very easy items, Cluster 2 corresponds to easy items, Cluster 3 represents moder-

ate items, Cluster 5 includes moderately hard items, Cluster 6 represents hard items,

and Cluster 1 corresponds to very hard items. Of the 240 ICCs, 129 difficulty classi-

fications were consistent between the visual categorization and the clustering-based

categorization, as shown in Table 1.

All but three items with differing classifications had a discrepancy of 61 adjacent

difficulty level. The clustering method typically classified items that were visually

categorized as moderate to hard into one adjacent higher difficulty level. Additional

discrepancies were found between the very easy and easy categories, where the clus-

tering method typically placed items into a lower difficulty class than originally

assigned. These discrepancies are detailed in Table 2, which lists the total counts for

each difficulty level based on both the visualization-based categorization and the

clustering-based categorization. Items 122, 147, and 231, as shown in Figure 5, were

notable outliers, each exhibiting a classification discrepancy of two difficulty levels.

Item 122, initially categorized as moderately hard, was reclassified by the clustering

method into the very hard group. Item 147, originally coded as moderate, was reas-

signed to the hard category by clustering. Similarly, Item 231, also categorized as

moderately hard, was reclassified by clustering as a very hard item.

Given the new group assignments, six b functions were created for fitting the final

regression model:

Yr(u) = b0 uð Þ+
X6

s = 1

Xr, sbs uð Þ+ er(u)

The lowest SSE from the final regression model was 649.22. The plot in Figure 6

shows that the calculated F statistic consistently exceeded both the pointwise and

maximal F critical values across the entire range of u. This indicates a statistically

significant overall difference in the functional forms of the clustered ICC groups

throughout the range of u. Following this, pairwise permutation t-tests were con-

ducted to identify which groups contributed to the differences observed in the permu-

tation F-test. Acknowledging that multiple comparisons increase the Type I error
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Figure 4. Mean Curves of Each Group of ICCs Clustered Together Labeled as Centroids.
Note. Centroids are ordered in by ascending difficulty once labels are given from the top left down to the

bottom right. Centroid 4—very easy, Centroid 2—easy, Centroid 3—moderate, Centroid 5—

moderately hard, Centroid 6—hard, Centroid 1—very hard.

Table 1. The Number of Times FPC Clustering Placed Items in Lower or Higher Difficulties
Compared to Their Original Categorization by Visualization, as well as the Ratio of Total
Agreement Between the Two Methods.

Total items categorized
in lower difficulties by
FPC clustering

Total items categorized
in higher difficulties by

FPC clustering

Total items with
matching categorizations

between methods

30 81 129/240 (53.75%)
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rate, the alpha level was adjusted using the Bonferroni correction, resulting in an

adjusted az = .003, as the original a was .05, and a total of 15 pairwise comparisons

were made between adjacent and non-adjacent difficulty clusters.

Figure 7 shows all pairwise comparisons for adjacent difficulty classes found

through clustering. That is, the very easy cluster was compared to the easy cluster,

easy was compared to moderate, moderate was compared to moderately hard,

Table 2. The Comparison Between the Visualization and FPC Clustering Based on Items’
ICCs.

Difficulty level Categorization by visualization Categorization by FPC clustering

Very easy 12 38
Easy 66 43
Moderately easy 84 49
Moderately hard 42 46
Hard 31 36
Very hard 5 28

Figure 5. ICCs for Items That Were Clustered Into Difficulty Classes More Than One
Adjacent Class Away From Their Initial Classification Through Visualization.
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Figure 6. Permutation F-Test.

Figure 7. Adjacent Cluster Group Permutation t-Test Comparisons.
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moderately hard was compared to hard, and hard was compared to very hard. For

the very easy and easy clusters, there was a statistically significant difference

between the mean curves of the cluster ranging from about u = [–3, –0.5], with the

largest degree of difference being around u = –3. This suggests that the primary dis-

tinction between very easy and easy items lies in the first half of their ICC curves.

The absence of significant differences over much of the interval between these adja-

cent categories may explain why Table 2 shows more ICCs being clustered into the

very easy category than the original visualization-based classification. Items initially

categorized as easy by visualization were reclassified as very easy through the clus-

tering process. When comparing easy and moderate ICCs, a significant difference

was found around u = [–1.9, 3], indicating that these two clusters can be distin-

guished across nearly the entire curve, except for the very beginning, with the largest

difference occurring around u = –1.15.

In contrast, moderate and moderately hard ICCs show significant differences over

the interval u = [–3, 1], meaning these curves can be differentiated across most of the

curve, except where u . 1, with the greatest divergence occurring around u = –1.25.

Comparing moderately hard and hard ICCs, the two clusters can be distinguished

across all but the tail end at u = [2.25, 3], with the largest difference near u = –0.2.

Finally, for the hard and very hard ICCs, significant differences appear from u = [–0.8,

3], suggesting that these groups can be differentiated in the latter two-thirds of their

curves, with the largest difference at u = 0.9. Since ICCs ranging from moderate to

hard were frequently classified one level higher when the clustering method was

applied, the non-significant ranges in the latter comparisons likely contributed to the

observed shift in Table 2, where fewer items were classified as moderate and more as

very hard compared to the initial visualization-based categorization.

For the non-adjacent comparisons seen in Figure 8, almost all the pairwise permu-

tation t-tests illustrated significance across the entire range of u, aside from moderate

versus hard and very easy versus moderate comparisons showing non-significance

right before u = –3. The point at which the greatest difference between the curves of

the clustered groups varies based on which specific non-adjacent comparison is being

reviewed, but all seem to agree that this ranges from about u = [–1, 0]. Referring

back to the items clustered into a difficulty group more than one adjacent class away,

it may be that the smaller observed F-values near the end range of u lead to such a

result. Altogether, these comparisons do indicate the differences in functional form

between adjacent ICC classes can be more difficult to discern in some cases. All

aforementioned depictions also illustrate where the clustering method most likely

made their decisions regarding ICC assignment. Overall, the clustering method

resulted in counts of each cluster being much closer to being even. Although the gen-

eral trend remained where easy to moderate hard questions made up the largest pro-

portion of the entire set, very hard items had the lowest total.

Given the clustering classifications, the neural network was trained on a subset of

the ICCs and their new difficulty codes. Figure 9 shows a plot tracking the loss and

accuracy for both the training (blue) and validation (green) sets through each of the
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Figure 8. Non-Adjacent Cluster Group Permutation t-Test Comparisons.
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1,000 epochs used to train the neural network. Ideally, as the neural network learns,

we expect to see a gradual decrease in loss and a corresponding increase in accuracy

over the epochs. Examining the trends of the loss function for both the training and

validation sets, there appears to be signs of overfitting, as the training loss keeps

decreasing slightly while the validation loss begins to rise. This notion is corrobo-

rated by the trends seen for accuracy. The accuracy for training increases while the

validation accuracy oscillates around a point. When this trained neural network was

given the remaining ICCs as a test set, it accurately predicted the difficulty classifi-

cations 79.6% of the time during its first application to test data.

A confusion matrix was generated and is presented in Table 3 to identify where

misclassifications exist when applying the neural network to the test set. This matrix

compares the predicted difficulty level of an item from the test set against its actual

difficulty level. Upon reviewing the confusion matrix, we observed that in the row

Figure 9. Training (Blue/Top graphs) and Validation (Green/Bottom graphs) Set Loss (Top
figure) and Accuracy (Bottom figure) Metrics Over the 1,000 Epochs Used to Train the
Neural Network.
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for Cluster 1 (the very hard cluster), 10 items were correctly classified, while six were

misclassified. These six items were classified into Cluster 6 (the hard cluster), but the

neural network incorrectly placed them to be in Cluster 1. For Cluster 2, six ICCs

were correctly classified, with one misclassification. This misclassified ICC was pre-

dicted to belong to Cluster 2 (the easy cluster) but was grouped in Cluster 3 (the mod-

erate cluster). In addition, in the row for Cluster 5 (the moderately hard cluster), we

find three misclassified ICCs. The neural network predicted these three ICCs to be

part of Cluster 5, although they were grouped in Cluster 6. Overall, 10 out of 49 ICCs

were misclassified. All other entries in the confusion matrix show agreement between

the model’s predictions and the actual clustering, resulting in the reported accuracy

rate of 79.6%.

To assess the consistency of the results, the neural network was re-trained and

tested on different subsets two additional times. While classification accuracy

remained around 80%, some misclassifications involved items being predicted as

belonging to clusters two or more difficulty levels away from their true clusters in

both re-trials. Specifically, three items with a true cluster of 3 (moderate) were mis-

classified as belonging to Cluster 6 (hard), and two items with a true cluster of 3

(moderate) were misclassified as Cluster 1 (very hard).

Among the consistently misclassified items, the discrimination parameter ranged

from 1.133 to 1.804, indicating that these items should effectively differentiate

between examinees of varying ability levels. The difficulty parameter for these items

ranged from 0.172 to 2.211, suggesting that classification challenges were not con-

fined to specific difficulty levels. In addition, the guessing parameter ranged from

0.113 to 0.19 among the misclassified items, further indicating no clear pattern

linked to guessing.

Based on these item-level parameters, it appears that the neural network may have

been particularly sensitive to small variations in ability near the threshold defined by

the difficulty parameter. The network might have struggled to fully capture the varia-

tions in slope (discrimination) across the ICCs, especially within the ability range of

[–1, 1], where the largest differences between moderate and very hard clustered items

Table 3. Confusion Matrix.

Prediction
classification

Actual (FPC cluster) classification

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total

Cluster 1 10 0 0 0 0 6 16
Cluster 2 0 6 1 0 0 0 7
Cluster 3 0 0 6 0 0 0 6
Cluster 4 0 0 0 9 0 0 9
Cluster 5 0 0 0 0 8 3 11
Cluster 6 0 0 0 0 0 0 0
Total 10 6 7 9 8 9 49
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occur. Across all tests, items falling between the moderate and very hard clusters

were consistently the most problematic during classification.

Discussion

Test items are building blocks of any assessment (Haladyna & Rodriguez, 2013).

The quality and validity of test forms largely depend on the quality of the items it

contains. Item difficulty is a crucial factor in determining the overall effectiveness of

both individual items and the test as a whole. As a result, accurately predicting item

difficulty is vital in any educational setting (AlKhuzaey et al., 2021). Traditional

methods for estimating item difficulty involved either placing items on test forms

and pre-testing them as field test items or relying on expert judgment when assessing

item difficulty qualitatively (Wauters et al., 2012). Pre-testing items involves embed-

ding them into operational test forms and administering them as if they were live

items; however, the data collected from these items do not contribute to the total

score. The items are then scored based on the assumptions of Classical or Item

Response Theories. While this method is commonly used by large testing programs,

smaller assessment programs may require multiple field test administrations of new

items to reliably establish their statistical characteristics. The second approach, rely-

ing on expert judgment, presents even more challenges. Subject matter experts may

introduce bias based on their own knowledge or experience, leading to difficulty esti-

mations that may not align with actual results once the items are operational. This

can result in a discrepancy between the expected and observed difficulty levels dur-

ing live administrations.

Several studies examined data-driven approaches to item difficulty estimation. For

example, Hsu, Lee, Chang & Sung (2018) presented a novel method for automating

item difficulty estimation in social studies tests, specifically for multiple-choice ques-

tions. Using word-embedding techniques, they constructed a semantic space from

learning materials and projected item texts into this space to generate vectors. By calcu-

lating cosine similarity between the vectors of item elements, they extracted semantic

features, which were then used to train and test a classifier. Another study compared

various ML methods for predicting item difficulty in English reading comprehension

tests using text features from item wordings. The analysis covered a range of ML algo-

rithms, including regularization methods, support vector machines, decision trees, ran-

dom forests, neural networks, and Naı̈ve Bayes, applied to both regression and

classification tasks. The results showed that ML algorithms using text features can rival

expert predictions, making them useful when item pre-testing is limited or unavailable

(Štěpánek et al., 2023). However, neither of these algorithms has been implemented in

an operational testing program nor evaluated using data from such a program.

This study outlined an empirical process for classifying items in difficulty cate-

gories through FDA and neural networks. The process involved clustering according

to FPC scores extracted from the ICCs. Comparing this functional difficulty cluster-

ing method to categorization through visualization, there were discrepancies, but
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almost all were only differing by one adjacent class. The discrepancies do not neces-

sarily mean one method is wrong, but they do show differing points of emphasis

when categorizing can lead to different results, and therefore, consistency in decision

making is important. Empirical data-driven methods of classification may provide

better consistency if they are structured correctly. Future studies may want to com-

pare the results of differing cluster algorithms to see which has the highest rate of

agreeance with what a test creation team believes. With this in mind, it is important

to recall fuzzy clustering allows for observations to have overlapping membership in

available clustering which introduces some assignment variation. This means replica-

tions may not result in exactly the same outcomes, although they may be very simi-

lar. If an operational testing program were to use fuzzy clustering, they would need

to save the results of the agreed-upon clustering algorithm. This would allow the

extracted FPCs and centroids to be reused, ensuring consistent cluster membership

when new items are introduced into the algorithm. In addition, it must be considered

that an item’s history influences how they are categorized. Adding a weighting

mechanism to slightly bias the results of clustering and/or classification algorithm

based on an item’s history may also lead to greater rates of agreement.

Regarding the neural network’s performance, the accuracy on the test data was

approximately 80%. The item cluster classes that posed the greatest classification

challenges ranged from moderate to very hard. With a larger set of ICCs for training,

the model could potentially achieve higher accuracy on the test set, as the training

data accuracies approached 90%, as indicated by the plot. Increasing the number of

epochs during training might also have improved the network’s ability to learn subtle

differences in the functional forms between adjacent classes. Furthermore, it was

mentioned that the plots for the neural network may have indicated overfitting to the

training set. Some control measures for future neural networks could be integrated to

adjust for this. Options include setting a maximum norm value to cap the weights’

norms in the neural network at a certain threshold, adjusting the weights during train-

ing if necessary, experimenting with different learning rates, modifying the batch

size, and other similar adjustments. Considering the relatively small sample of items

in this study, a simpler psychometric model might have resulted in more accurate

classification by the neural network. The Rasch model, which estimates only the dif-

ficulty parameter, provides more precise difficulty estimates than the 2PL or 3PL

models in smaller sample scenarios (Thissen & Wainer, 1982). Consequently, a

neural network trained on ICC structures derived from a Rasch model may capture

more precise patterns, leading to higher classification accuracy.

Aside from some of the limitations of this pilot design, its utility would be seen in

testing programs where results from administration come in at various times of the

year and in smaller quantities. Connecting a pipeline categorization algorithm to a

program’s database can streamline ICC generation, simplify item labeling, and offer

an empirical basis for item categorization. This may even be integrated into a fully

automated system, which takes test results, adjusts items classifications, flags anoma-

lies, and then generates various forms of tests to increase test production while
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saving on labor resources. Altogether this process presents a data-driven approach

for item classification meant to uphold the structural integrity of a test that can be

tailored to the evolving needs of testing programs.
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